A BGK approximation to scalar conservation laws with discontinuous flux

نویسنده

  • F. Berthelin
چکیده

We study the BGK approximation to first-order scalar conservation laws with a flux which is discontinuous in the space variable. We show that the Cauchy Problem for the BGK approximation is well-posed and that, as the relaxation parameter tends to 0, it converges to the (entropy) solution of the limit problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of a continuous BGK model for initial boundary-value problems for conservation laws

We consider a scalar conservation law in the quarter plane. This equation is approximated in a continuous kinetic Bhatnagar-Gross-Krook (BGK) model. The convergence of the model towards the unique entropy solution is established in the space of functions of bounded variation, using kinetic entropy inequalities, without special restriction on the flux nor on the equilibrium problem’s data. As an...

متن کامل

Hyperbolic Conservation Laws with Discontinuous Fluxes and Hydrodynamic Limit for Particle Systems

We study the following class of scalar hyperbolic conservation laws with discontinuous fluxes: ∂tρ + ∂xF (x, ρ) = 0. (0.1) The main feature of such a conservation law is the discontinuity of the flux function in the space variable x. Kruzkov’s approach for the L1-contraction does not apply since it requires the Lipschitz continuity of the flux function; and entropy solutions even for the Rieman...

متن کامل

High Order Regularity for Conservation Laws

We study the regularity of discontinuous entropy solutions to scalar hyperbolic conservation laws with uniformly convex fluxes posed as initial value problems on R. For positive α we show that if the initial data has bounded variation and the flux is smooth enough then the solution u( · , t) is in the Besov space Bα σ (L σ) where σ = 1/(α + 1) whenever the initial data is in this space. As a co...

متن کامل

Godunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space

Abstract. Scalar conservation laws with a flux function discontinuous in space are approximated using a Godunov-type method for which a convergence theorem is proved. The case where the flux functions at the interface intersect is emphasized. A very simple formula is given for the interface flux. A numerical comparison between the Godunov numerical flux and the upstream mobility flux is present...

متن کامل

A Bhatnagar-Gross-Krook Approximation to Stochastic Scalar Conservation Laws

and study its approximation in the sense of Bhatnagar-Gross-Krook (a BGKlike approximation for short). In particular, we aim to describe the conservation law (1.1) as the hydrodynamic limit of the stochastic BGK model, as the microscopic scale ε goes to 0. The literature devoted to the deterministic counterpart, i.e. corresponding to the situation Φ = 0, is quite extensive (see [1], [11], [15],...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010